Bài 1 trang 99 SGK Hình học 12


    Đề bàiCho lăng trụ lục giác đều \(ABCDEF.A'B'C'D'E'F'\), \(O\) và \(O'\) là tâm đường tròn ngoại tiếp hai đáy, mặt phẳng \((P)\) đi qua trung điểm của \(OO'\) và cắt các cạnh bên cúa lăng trụ. Chứng minh rằng \((P)\) chia lăng trụ đã cho thành hai đa diện có...

    Đề bài

    Cho lăng trụ lục giác đều \(ABCDEF.A’B’C’D’E’F’\), \(O\) và \(O’\) là tâm đường tròn ngoại tiếp hai đáy, mặt phẳng \((P)\) đi qua trung điểm của \(OO’\) và cắt các cạnh bên cúa lăng trụ. Chứng minh rằng \((P)\) chia lăng trụ đã cho thành hai đa diện có thể tích bằng nhau.

    Phương pháp giải – Xem chi tiếtBài 1 trang 99 SGK Hình học 12

    Dựa vào tính chất đối xứng tâm: Hai hình đối xứng nhau qua tâm I nào đó thì có thể tích bằng nhau.

    Lời giải chi tiết

    Bài 1 trang 99 SGK Hình học 12

    Gọi \(I\) là trung điểm của \(OO’\) thì \(I\) là tâm đối xứng của lăng trụ. Giả sử mặt phẳng \((P)\) đi qua \(I\) và chia khối lăng trụ thành hai phần (H1) và (H2).

    Lấy điểm \(M\) bất kì thuộc (H1) thì điểm \(M’\) đối xứng với \(M\) cũng nằm trong hình lăng trụ, và do đó \(M’ ∈\) (H2) và ngược lại, một điểm \(N ∈\) (H2), lấy đối xứng qua \(I\) sẽ được \(N’ ∈\) (H1).

    Do đó hai hình (H1) và (H2) đối xứng nhau qua tâm \(I\).

    Vì vậy thể tích (H1) bằng thể tích (H2).

    Nhận xét: Trong một hình bất kì trong không gian mà có tâm đối xứng, thì mặt phẳng đi qua tâm sẽ chia hình không gian đó thành hai phần có thể tích bằng nhau.