Bài 14 trang 148 SGK Giải tích 12


    Đề bàiTìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục OxPhương pháp giải - Xem chi tiếtTính thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\,\,y...

    Đề bài

    Tìm vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường \(y = 2x^2\) và \(y = x^3\) xung quanh trục Ox

    Phương pháp giải – Xem chi tiếtBài 14 trang 148 SGK Giải tích 12

    Tính thể tích vật tròn xoay khi xoay hình phẳng giới hạn bởi các đường \(y = f\left( x \right);\,\,y = g\left( x \right)\) xung quanh trục Ox.

    Bước 1: Giải phương trình hoành độ giao điểm, suy ra các nghiệm \({x_1} < {x_2} <… < {x_n}\)

    Bước 2: Tính thể tích: 

    \(\begin{array}{l}
    V = \pi \left[ {\int\limits_{{x_1}}^{{x_2}} {\left| {{f^2}\left( x \right) – {g^2}\left( x \right)} \right|dx} + \int\limits_{{x_2}}^{{x_3}} {\left| {{f^2}\left( x \right) – {g^2}\left( x \right)} \right|dx} +…} \right.\\
    \left. {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \int\limits_{{x_n}}^{{x_n}} {\left| {{f^2}\left( x \right) – {g^2}\left( x \right)} \right|dx} } \right]\end{array}\)

    Lời giải chi tiết

    Xét phương trình hoành độ giao điểm 

    \(2{x^2} = {x^3} \Leftrightarrow {x^2}\left( {x – 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
    x = 0\\
    x = 2
    \end{array} \right.\)

    Vậy thể tích cần tìm là:

    \(\begin{array}{l}
    V = \pi \int\limits_0^2 {\left| {{{\left( {2{x^2}} \right)}^2} – {{\left( {{x^3}} \right)}^2}} \right|dx} = \pi \left| {\int\limits_0^2 {\left( {4{x^4} – {x^6}} \right)dx} } \right|\\
    \,\,\,\, = \pi \left| {\left. {\left( {\frac{{4{x^5}}}{5} – \frac{{{x^7}}}{7}} \right)} \right|_0^2} \right| = \frac{{256}}{{35}}\pi
    \end{array}\)