Bài 17 trang 195 SGK Đại số và Giải tích 12 Nâng cao


    Bài 17Tìm các căn bậc hai của mỗi số phức sau:\( - i\);\(4i\);\( - 4\);\(1 + 4\sqrt 3 i\).Giải* Giả sử \(z=x+yi\) là căn bậc hai của \(-i\), ta có:\({\left( {x + yi} \right)^2} =  - i \Leftrightarrow {x^2} - {y^2} + 2xyi =  - i \Leftrightarrow \left\{ \matrix{  {x^2}...

    Bài 17

    Tìm các căn bậc hai của mỗi số phức sau:\( – i\);\(4i\);\( – 4\);\(1 + 4\sqrt 3 i\).

    Giải

    * Giả sử \(z=x+yi\) là căn bậc hai của \(-i\), ta có:

    \({\left( {x + yi} \right)^2} =  – i \Leftrightarrow {x^2} – {y^2} + 2xyi =  – i \Leftrightarrow \left\{ \matrix{  {x^2} – {y^2} = 0\,\,\left( 1 \right) \hfill \cr  2xy =  – 1\,\,\,\,\,\,\left( 2 \right) \hfill \cr}  \right.\)

    Từ (2) suy ra \(y =  – {1 \over {2x}}\) thế vào (1) ta được:

    \({x^2} – {1 \over {4{x^2}}} = 0 \Leftrightarrow {x^4} = {1 \over 4} \Leftrightarrow x =  \pm {1 \over {\sqrt 2 }}\)

    +) Với \(x = {1 \over {\sqrt 2 }}\)ta có \(y =  – {1 \over {2x}} =  – {1 \over {\sqrt 2 }}\)

    +) Với \(x =  – {1 \over {\sqrt 2 }}\)ta có \(y =  – {1 \over {2x}} = {1 \over {\sqrt 2 }}\)

    Hệ có hai nghiệm là: \(\left( { – {1 \over {\sqrt 2 }},{1 \over {\sqrt 2 }}} \right),\left( {{1 \over {\sqrt 2 }}, – {1 \over {\sqrt 2 }}} \right)\)

    Vậy \(–i\) có hai căn bậc hai là: \({z_1} =  – {1 \over {\sqrt 2 }} + {1 \over {\sqrt 2 }}i\),\({z_2} = {1 \over {\sqrt 2 }} – {1 \over {\sqrt 2 }}i\)

    * Giả sử \(z=x+yi\) là căn bậc hai của \(4i\), ta có:

    \({\left( {x + yi} \right)^2} = 4i \Leftrightarrow {x^2} – {y^2} + 2xyi = 4i \Leftrightarrow \left\{ \matrix{  {x^2} – {y^2} = 0\,\,\left( 1 \right) \hfill \cr  xy = 2\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr}  \right.\)

    Thay \(y = {2 \over x}\) vào phương trình thứ nhất ta được:

    \({x^2} – {4 \over {{x^2}}} = 0 \Leftrightarrow {x^4} = 4 \Leftrightarrow x =  \pm \sqrt 2 \)

    +) Với \(x = \sqrt 2 \) ta có \(y = {2 \over x} = \sqrt 2 \);            

    +) Với \(x =  – \sqrt 2 \) ta có \(y =  – \sqrt 2 \)

    Hệ có hai nghiệm \(\left( {\sqrt 2 ;\sqrt 2 } \right)\),\(\left( { – \sqrt 2 ; – \sqrt 2 } \right)\)

    Vậy \(4i\) có hai căn bậc hai là:\({z_1} = \sqrt 2  + \sqrt 2 i\);        \({z_2} =  – \sqrt 2  – \sqrt 2 i\)

    * Ta có \( – 4 = 4{i^2} = {\left( {2i} \right)^2}\) do đó \(-4\) có hai căn bậc hai là \( \pm 2i\)

    * Giả sử  \(z=x+yi\) là căn bậc hai của \(1 + 4\sqrt 3 i\).

    \({\left( {x + yi} \right)^2} = 1 + 4\sqrt 3 i\)

    \( \Leftrightarrow \left\{ \matrix{  {x^2} – {y^2} = 1 \hfill \cr  \,2xy = 4\sqrt 3 \, \hfill \cr}  \right.\)\( \Leftrightarrow \left\{ \matrix{  y = {{2\sqrt 3 } \over x} \hfill \cr  {x^2} – {{12} \over {{x^2}}} \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  y = {{2\sqrt 3 } \over x} \hfill \cr  {x^2} = 4 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 2 \hfill \cr  y = \sqrt 3  \hfill \cr}  \right.\)hoặc \(\left\{ \matrix{  x =  – 2 \hfill \cr  y =  – \sqrt 3  \hfill \cr}  \right.\)

    Hệ có hai nghiệm \(\left( {2;\sqrt 3 } \right),\left( { – 2; – \sqrt 3 } \right)\)

    Vậy \(1 + 4\sqrt 3 i\) có hai căn bậc hai là:\({z_1} = 2 + \sqrt 3 i\),\({z_2} =  – 2 – \sqrt 3 i\)