Bài 19 trang 196 SGK Đại số và Giải tích 12 Nâng cao


    Bài 19Tìm nghiệm phức của các phương trình bậc hai sau:a) \({z^2} = z + 1\);b) \({z^2} + 2z + 5 = 0\)c) \({z^2} + \left( {1 - 3i} \right)z - 2\left( {1 + i} \right) = 0\).Giảia) Ta có \({z^2} = z + 1 \Leftrightarrow {z^2} - z =...

    Bài 19

    Tìm nghiệm phức của các phương trình bậc hai sau:

    a) \({z^2} = z + 1\);

    b) \({z^2} + 2z + 5 = 0\)

    c) \({z^2} + \left( {1 – 3i} \right)z – 2\left( {1 + i} \right) = 0\).

    Giải

    a) Ta có \({z^2} = z + 1 \Leftrightarrow {z^2} – z = 1 \Leftrightarrow {z^2} – z + {1 \over 4} = {5 \over 4}\)

                                  \( \Leftrightarrow {\left( {z – {1 \over 2}} \right)^2} = {5 \over 4} \Leftrightarrow z – {1 \over 2} =  \pm {{\sqrt 5 } \over 2} \Leftrightarrow z = {1 \over 2} \pm {{\sqrt 5 } \over 2}\)

    b) \({z^2} + 2z + 5 = 0 \Leftrightarrow {\left( {z + 1} \right)^2} =  – 4 = {\left( {2i} \right)^2} \Leftrightarrow \left[ \matrix{  z + 1 = 2i \hfill \cr  z + 1 =  – 2i \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  z =  – 1 + 2i \hfill \cr  z =  – 1 – 2i \hfill \cr}  \right.\)

    Vậy \(S = \left\{ { – 1 + 2i; – 1 – 2i} \right\}\)

    c) \({z^2} + \left( {1 – 3i} \right)z – 2\left( {1 + i} \right) = 0\) có biệt thức

                       \(\Delta  = {\left( {1 – 3i} \right)^2} + 8\left( {1 + i} \right) = 1 – 9 – 6i + 8 + 8i = 2i = {\left( {1 + i} \right)^2}\)

    Do đó phương trình có hai nghiệm là: \({z_1} = {1 \over 2}\left[ { – 1 + 3i + \left( {1 + i} \right)} \right] = 2i\)

    \({z_2} = {1 \over 2}\left[ { – 1 + 3i – \left( {1 + i} \right)} \right] =  – 1 + i\)

    Vậy \(S = \left\{ {2i; – 1 + i} \right\}\)