Bài 2.11 trang 51 sách bài tập (SBT) – Hình học 12


    Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.b) Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên...

    Một hình trụ có bán kính đáy bằng 50 cm và có chiều cao h = 50 cm.

    a) Tính diện tích xung quanh của hình trụ và thể tích của khối trụ được tạo nên.

    b) Một đoạn thẳng có chiều dài 100 cm và có hai đầu mút nằm trên hai đường tròn đáy. Tính khoảng cách từ đoạn thẳng đó đến trục hình trụ.

    Hướng dẫn làm bài:

    Bài 2.11  trang 51 sách bài tập (SBT) – Hình học 12

    a) Ta có công thức \({S_{xq}} = 2\pi rl\)   với r = 50 cm , l = 50 cm.

    Do đó  \({S_{xq}} = 2\pi.50.50 = \pi.5000(c{m^2})\)  và \(V = \pi {r^2}h = 125000.\pi (c{m^3})\)

    b) Giả sử đoạn thẳng AB có điểm mút A nằm trên đường tròn đáy tâm O’. Theo giả thiết ta có: AB = 100 cm. Giả sử IK là đoạn vuông góc chung của trục OO’ và đoạn AB với I thuộc OO’ và K thuộc AB.  Chiếu vuông góc đoạn  AB xuống mặt phẳng đáy chứa đường tròn tâm O’, ta có A’, H, B lần lượt là hình chiếu  của A, K, B.

    Vì  \(KI \bot OO’\)  nên IK // mp(O’BA’), do đó  O’H // IK  và O’H = IK.

    Ta suy ra  \(O’H \bot AB\)  và \(O’H \bot AA’\) . Vậy \(O’H \bot A’B\)

    Xét tam giác vuông AA’B  ta có  \(A’B = \sqrt {A{B^2} – AA{‘^2}}  = \sqrt {{{100}^2} – {{50}^2}}  = 50\sqrt 3 \)

    Vậy \(IK = O’H = \sqrt {O'{A^2} – A'{H^2}}\)

    \( = \sqrt {{{50}^2} – {{({{50\sqrt 3 } \over 2})}^2}}  = 50\sqrt {1 – {3 \over 4}}  = 25(cm)\)