Bài 2.4 trang 50 sách bài tập (SBT) – Hình học 12.


    Cho hình chóp tứ giác đều S.ABCD có chiều cao  SO = h và góc \(\widehat {SAB} = \alpha (\alpha  > {45^0})\) . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp.Hướng dẫn làm bài:Gọi r là...

    Cho hình chóp tứ giác đều S.ABCD có chiều cao  SO = h và góc \(\widehat {SAB} = \alpha (\alpha  > {45^0})\) . Tính diện tích xung quanh của hình nón đỉnh S và có đường tròn đáy ngoại tiếp hình vuông ABCD của hình chóp.

    Hướng dẫn làm bài:

    Bài 2.4 trang 50 sách bài tập (SBT) – Hình học 12.

    Gọi r là bán kính đáy của hình nón ta có  OA = r, SO = h và SA = SB = SC = SD = l là đường sinh của hình nón.

    Gọi I là trung điểm của đoạn AB, ta có:

    \(\left\{ {\matrix{{S{A^2} = S{O^2} + O{A^2}} \cr {AI = SA.\cos \alpha } \cr} } \right. \Leftrightarrow \left\{ {\matrix{{{l^2} = {h^2} + {r^2}(1)} \cr {{{r\sqrt 2 } \over 2} = l\cos \alpha (2)} \cr} } \right.\)

    \((2) \Rightarrow r = \sqrt 2 l\cos \alpha \)

    \((1) \Rightarrow {l^2} = {h^2} + 2{l^2}{\cos ^2}\alpha\)

    \(\Rightarrow {h^2} = {l^2}(1 – 2{\cos ^2}\alpha )\)

    \(\Rightarrow {l^2} = {{{h^2}} \over {1 – 2{{\cos }^2}\alpha }}\)

    \(\Rightarrow l = {h \over {\sqrt {1 – 2{{\cos }^2}\alpha } }}\)

    Do đó  \(r = \sqrt 2 l\cos \alpha  = {{\sqrt 2 h\cos \alpha } \over {\sqrt {1 – 2{{\cos }^2}\alpha } }}\)

    \({S_{xq}} = \pi rl = \pi.{{\sqrt 2 h\cos \alpha } \over {\sqrt {1 – 2{{\cos }^2}\alpha } }}.{h \over {\sqrt {1 – 2{{\cos }^2}\alpha } }} = {{\pi \sqrt 2 {h^2}\cos \alpha } \over {1 – 2{{\cos }^2}\alpha }}\)