Bài 2.60 trang 105 Sách bài tập (SBT) Toán Hình học 10


    Cho tam giác ABC có BC = a, CA = b và AB = c thỏa mãn hệ thức \({c \over {b + a}} + {b \over {a + c}} = 1\). Hãy tính số đo của góc A.Gợi ý làm bàiTa có: \({c \over {b + a}} + {b \over {a +...

    Cho tam giác ABC có BC = a, CA = b và AB = c thỏa mãn hệ thức \({c \over {b + a}} + {b \over {a + c}} = 1\). Hãy tính số đo của góc A.

    Gợi ý làm bài

    Ta có: \({c \over {b + a}} + {b \over {a + c}} = 1\)

    \(\eqalign{
    & \Rightarrow c\left( {a + c} \right) + b\left( {b + a} \right) = \left( {b + a} \right)\left( {a + c} \right) \cr
    & \Rightarrow ca + {c^2} + {b^2} + ba = ba + {a^2} + bc + ac \cr
    & \Rightarrow {b^2} + {c^2} – {a^2} = bc. \cr} \)

    Ta có: \(\cos A = {{{b^2} + {c^2} – {a^2}} \over {2bc}} = {{bc} \over {2bc}} = {1 \over 2}\)

    \( \Rightarrow \widehat A = {60^ \circ }\)