Bài 3.2 trang 102 sách bài tập (SBT) – Hình học 12


    Trong không gian Oxyz cho vecto \(\overrightarrow a  = (1; - 3;4)\).a) Tìm y0 và z0 để cho vecto \(\overrightarrow b  = (2;{y_0};{z_0})\)  cùng phương với \(\overrightarrow a \)b) Tìm tọa độ của vecto \(\overrightarrow c \) biết rằng  \(\overrightarrow a \) và \(\overrightarrow c \) ngược hướng và \(|\overrightarrow {c|}  = 2|\overrightarrow...

    Trong không gian Oxyz cho vecto \(\overrightarrow a  = (1; – 3;4)\).

    a) Tìm y0 và z0 để cho vecto \(\overrightarrow b  = (2;{y_0};{z_0})\)  cùng phương với \(\overrightarrow a \)

    b) Tìm tọa độ của vecto \(\overrightarrow c \) biết rằng  \(\overrightarrow a \) và \(\overrightarrow c \) ngược hướng và \(|\overrightarrow {c|}  = 2|\overrightarrow a |\)

    Hướng dẫn làm bài:

    a) Ta biết rằng  \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương khi và chỉ khi  \(\overrightarrow a  = k\overrightarrow b \)  với k là một số thực. Theo giả thiết ta có:  \(\overrightarrow b  = ({x_0};{y_0};{z_0})\)  với x0 = 2. Ta suy ra  \(k = {1 \over 2}\) nghĩa là \(l = {1 \over 2}{x_0}\)

    Do đó: \( – 3 = {1 \over 2}{y_0}\)   nên y0 = -6

                \(4 = {1 \over 2}{z_0}\)    nên z0 = 8

    Vậy ta có  \(\overrightarrow b  = (2; – 6;8)\)

    b) Theo giả thiết ta có   \(\overrightarrow c  =  – 2\overrightarrow a \)

    Do đó tọa độ của \(\overrightarrow c \) là: \(\overrightarrow c \) = (-2; 6; -8).