Lập phương trình mặt phẳng (P) chứa đường thẳng d: \(\left\{ {\matrix{{x = – 2 – t} \cr {y = 1 + 4t} \cr {z = 1 – t} \cr} } \right.\) và song song với d1: \({{x – 1} \over 1} = {{y – 1} \over 4} = {{z – 1} \over { – 3}}\)
Hướng dẫn làm bài:
Đường thẳng d đi qua M(-2; 1;1) có vecto chỉ phương là \(\overrightarrow a ( – 1;4; – 1)\)
Đường thẳng d1 đi qua N(1; 1; 1) có vecto chỉ phương là \(\overrightarrow b (1;4; – 3)\)
Ta có: \(\overrightarrow {MN} (3;0;0);\overrightarrow a \wedge \overrightarrow b = ( – 8; – 4; – 8)\) nên \(\overrightarrow {MN} (\overrightarrow a \wedge \overrightarrow b ) \ne 0\) , suy ra d và d1 chéo nhau. Do đó (P) là mặt phẳng đi qua M(-2; 1; 1) có vecto pháp tuyến bằng \(\overrightarrow a \wedge \overrightarrow b \)
Phương trình của (P) là: \(–8(x + 2) – 4(y – 1) – 8(z – 1) = 0\) hay \(2x +y + 2z + 1 = 0\)