Bài 3. Đường thẳng vuông góc với mặt phẳng


Một đoạn thẳng AB không vuông góc với mặt phẳng \(\left( \alpha  \right)\) cắt mặt phẳng này tại trung điểm O của đoạn thẳng đó. Các đường thẳng vuông góc với \(\left( \alpha  \right)\) qua A và B lần lượt cắt mặt phẳng \(\left( \alpha  \right)\) tại...
Cho tam giác ABC. Gọi \(\left( \alpha  \right)\) là mặt phẳng vuông góc với đường thẳng CA tại A và \(\left( \beta  \right)\) là mặt phẳng vuông góc với đường thẳng CB tại B. Chứng minh rằng hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta...
Cho  hình lăng trụ tam giác ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC và biết rằng A’H vuông góc với mặt phẳng (ABC). Chứng minh rằng:a) AA ⊥ BC và AA’ ⊥ B’C’.b) Gọi MM’ là giao tuyến của...
Hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại A và có cạnh bên SA vuông góc với mặt phẳng đáy là (ABC). Gọi D là điểm đối xứng của của điểm B qua trung điểm O của cạnh AC. Chứng minh...
Hai tam giác cân ABC và DBC nằm trong hai mặt phẳng khác nhau có chung cạnh đáy BC tạo nên tứ diện ABCD. Gọi I là trung điểm của cạnh BC.a) Chứng minh \(BC \bot A{\rm{D}}\)b) Gọi AH là đường cao...
Chứng minh rằng tập hợp những điểm cách đều ba đỉnh của tam giác ABC là đường thẳng d vuông góc với mặt phẳng (ABC) tại tâm O của đường tròn (C) ngoại tiếp tam giác ABC đó.Giải:Phần thuận. Nếu MA = MB =...