Bài 43
a) \(y = x{e^{ – x}}\); b) \(y = {{\ln x} \over x}\).
Giải
a) Đặt
\(\left\{ \matrix{
u = x \hfill \cr
dv = {e^{ – x}}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = – {e^{ – x}} \hfill \cr} \right.\)
Suy ra \(\int {x{e^{ – x}}dx = – x{e^{ – x}} + \int {{e^{ – x}}dx = – x{e^{ – x}} – {e^{ – x}} + C = – {e^{ – x}}\left( {x + 1} \right) + C} } \)
b) Đặt \(u = \ln x \Rightarrow du = {{dx} \over x}\)
Do đó \(\int {{{\ln x} \over x}} dx = \int {udu = {{{u^2}} \over 2}} + C = {{{{(\ln x)}^2}} \over 2} + C\)