Bài 51 Trang 176 SGK Đại số và Giải tích 12 Nâng cao


    Bài 51.Tính diện tích các hình phẳng giới hạn bởi:a) Đồ thị các hàm số \(y = 4 - {x^2},y =  - x + 2;\)b) Các đường cong có phương trình \(x = 4 - 4{y^2}\) và \(x = 1 - {y^4}\) trong miền \(x\ge0\).Giảia) Phương trình hoành độ giao...

    Bài 51.Tính diện tích các hình phẳng giới hạn bởi:

    a) Đồ thị các hàm số \(y = 4 – {x^2},y =  – x + 2;\)
    b) Các đường cong có phương trình \(x = 4 – 4{y^2}\) và \(x = 1 – {y^4}\) trong miền \(x\ge0\).

    Giải

    a) Phương trình hoành độ giao điểm của hai đồ thị là:

    \(4 – {x^2} = – x + 2 \Leftrightarrow {x^2} – x – 2 = 0 \Leftrightarrow \left[ \matrix{
    x = – 1 \hfill \cr
    x = 2 \hfill \cr} \right.\)

    Bài 51 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

    Bài 51 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

    Do đó 

    \(\eqalign{
    & S = \int\limits_{ – 1}^2 {\left| {4 – {x^2} – \left( { – x + 2} \right)} \right|} dx = \int\limits_{ – 1}^2 {\left| { – {x^2} + x + 2} \right|} dx \cr
    & \,\,\, = \int\limits_{ – 1}^2 {\left( { – {x^2} + x + 2} \right)} dx = \left. {\left( { – {{{x^3}} \over 3} + {{{x^2}} \over 2} + 2x} \right)} \right|_{ – 1}^2 = {9 \over 2} \cr} \)

    b) Phương trình tung độ giao điểm của hai đồ thị là

    \(4 – 4{y^2} = 1 – {y^4} \Leftrightarrow {y^4} – 4{y^2} + 3 = 0 \Leftrightarrow \left[ \matrix{
    {y^2} = 1 \hfill \cr
    {y^2} = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
    y = \pm 1 \hfill \cr
    y = \pm \sqrt 3\; (\text{ loại vì } x<0)\hfill \cr} \right.\)

    Bài 51 Trang 176 SGK Đại số và Giải tích 12 Nâng cao

    Diện tích giới hạn hai đồ thị ở phần \(x \ge 0\) là:

    \(\eqalign{
    & S = \int\limits_{ – 1}^1 {\left[ {4 – 4{y^2} – \left( {1 – {y^4}} \right)} \right]} dy \cr
    & \,\,\, = \int\limits_{ – 1}^1 {\left( {{y^4} – 4{y^2} + 3} \right)} dy \cr
    & \,\, = \left. {\left( {{{{y^5}} \over 5} – {4 \over 3}{y^3} + 3y} \right)} \right|_{ – 1}^1 = 2.{{28} \over {15}} = {{56} \over {15}} \cr} \)