Bài 7 trang 146 SGK Giải tích 12


    Đề bàiCho hàm số \(y = {2 \over {2 - x}}\)a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\)  của hàm số đã cho.b) Tìm các giao điểm của \((C)\)  và đồ thị của hàm số  \(y=x^2+1.\) Viết phương trình tiếp tuyến của \((C)\)  tại mỗi giao điểm.c) Tính thể tích...

    Đề bài

    Cho hàm số \(y = {2 \over {2 – x}}\)

    a) Khảo sát sự biến thiên và vẽ đồ thị \((C)\)  của hàm số đã cho.

    b) Tìm các giao điểm của \((C)\)  và đồ thị của hàm số  \(y=x^2+1.\) Viết phương trình tiếp tuyến của \((C)\)  tại mỗi giao điểm.

    c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng H giới hạn bởi đồ thị (C) và các đường thẳng \(y = 0, \,  x = 0,  \, x = 1\) xung quanh trục \(Ox.\)

    Phương pháp giải – Xem chi tiếtBài 7 trang 146 SGK Giải tích 12

    a) Khảo sát và vẽ đồ thị hàm số theo các bước đã được học.

    b) Giải phương trình hoành độ giao điểm của đồ thị hàm số \((C)\) với đồ thị hàm số \(y=x^2+1\) tìm các giao điểm.

    +) Sau đó lập phương trình tiếp tuyến của đồ thị hàm số \((C)\) dựa vào công thức: Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại điểm \(x=x_0\) có công thức: \(y = y’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + {y_0}.\)

    c) Khi quay hình phẳng được giới hạn bởi các đồ thị hàm số \(y=f(x), \, y=g(x)\) và các đường thẳng \(x=a, \, \, x=b \, (a<b)\) quanh trục \(Ox\) có thể tích được tính bởi công thức: \[V = \pi \int\limits_a^b {\left| {{f^2}\left( x \right) – {g^2}\left( x \right)} \right|dx.} \] 

    Lời giải chi tiết

    a) _ Tập xác định: \((-∞, 2) ∪(2, +∞).\)

    _ Sự biến thiên: \(y’ = {2 \over {{{(2 – x)}^2}}} > 0,\forall x \in ( – \infty,2) \cup (2, + \infty )\)

    Nên hàm số đồng biến trên hai khoảng này.

    _ Hàm số không có cực trị

    _ Giới hạn tại vô cực và tiệm cận ngang

     \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } {2 \over {2 – x}} = 0;\mathop {\lim }\limits_{x \to  – \infty } y = \mathop {\lim }\limits_{x \to  – \infty } {2 \over {2 – x}} = 0\)

    \( \Rightarrow y = 0\) là tiệm cận ngang của đồ thị hàm số.

    _ Giới hạn vô cực và tiệm cận đứng:

     \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} ({2 \over {2 – x}}) =  – \infty ;\mathop {\lim }\limits_{x \to {2^ – }}  = \mathop {\lim }\limits_{x \to {2^ – }} ({2 \over {2 – x}}) =  + \infty \)

    \( \Rightarrow x = 2\) là tiệm cận đứng của đồ thị hàm số.

    _ Bảng biến thiên:

    Bài 7 trang 146 SGK Giải tích 12

    Đồ thị hàm số:

    Bài 7 trang 146 SGK Giải tích 12

    Đồ thị hàm số:

    Đồ thị cắt trục tung tại điểm có tung độ \(y = 1\), không cắt trục hoành.

    b) Phương trình xác định hoành độ giao điểm của hai đồ thị là:

    \({2 \over {2 – x}} = {x^2} + 1 \Leftrightarrow {x^3} – 2{x^2} + x = 0 \Leftrightarrow x \in \left\{ {0,1} \right\}\)

    Hai đồ thị cắt nhau tại hai điểm \(M_1(0; \, 1); \, M_2(1; \, 2).\)

    Tiếp tuyến với đồ thị (C): \(y = {2 \over {2 – x}}\) tại điểm \(M_1\) có phương trình là: \(y = {1 \over 2}x + 1.\)

    Tiếp tuyến  tại điểm \(M_2\) có phương trình \(y = 2(x – 1) + 2 = 2x.\)

    c) Trong khoảng \((0; 1)\) đồ thị (C) nằm phía trên trục hoành nên thể tích cần tính là:

     \(V = \pi \int_0^1 {({2 \over {2 – x}}} {)^2}  = \left. {\pi.\frac{4}{{2 – x}}} \right|_0^1 = 2\pi. \)