Bài 8. Phương trình mũ và lôgarit


a)\(\left\{ \matrix{ x + y = 11 \hfill \cr{\log _2}x + {\log _2}y = 1 + {\log _2}15 \hfill \cr}  \right.\)                                   b) \(\left\{ \matrix{ \log ({x^2} + {y^2}) = 1 + \log 8 \hfill \cr\log (x + y) -...
a)\(\left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr{\log _{\sqrt 3 }}(x - y) = 2; \hfill \cr}  \right.\)                                            b) \(\left\{ \matrix{ x + y = 25 \hfill \cr{\log _2}x - {\log _2}y = 2 \hfill \cr}  \right.\)         Giảia) \(\left\{ \matrix{{3^x}{.2^y}...
a)\(\left\{ \matrix{{2^x} + {5^{x + y}} = 7 \hfill \cr {2^{x - 1}}{.5^{x + y}} = 5 \hfill \cr}  \right.\)b) \(\left\{ \matrix{{x^2} - {y^2} = 3 \hfill \cr {\log _3}\left( {x + y} \right) - {\log _5}\left( {x - y}...
a )\(\left\{ \matrix{{\log ^2}x = {\log ^2}y + {\log ^2}xy \hfill \cr{\log ^2}\left( {x - y} \right) + \log x\log y = 0 \hfill \cr}  \right.\)b) \(\left\{ \matrix{{3^{\log x}} = {4^{\log y}} \hfill \cr{\left( {4x} \right)^{\log 4}} = {\left( {3y}...
a ) \(\left\{ \matrix{ {4^{{{\log }_3}xy}} = 2 + {\left( {xy} \right)^{{{\log }_3}2}} \hfill \cr {x^2} + {y^2} - 3x - 3y = 12 \hfill \cr}  \right.\)b)  \(\left\{ \matrix{ y = 1 + {\log _2}x \hfill \cr{x^y} = 64 \hfill \cr} ...
a) \(\left\{ \matrix{9{x^2} - 4{y^2} = 5 \hfill \cr{\log _5}\left( {3x + 2y} \right) - {\log _3}\left( {3x - 2y} \right) = 1 \hfill \cr}  \right.\)                     b) \(\left\{ \matrix{{5^{\ln x}} = {6^{\ln...