Bài 86 trang 156 SGK Đại số 10 nâng cao


     Với giá trị nào của a, các hệ phương trình sau có nghiệma) \(\left\{ \matrix{ {x^2} - 5x + 6 < 0 \hfill \cr ax + 4 < 0 \hfill \cr} \right.\)b)\(\left\{ \matrix{ 4x + 1 < 7x - 2 \hfill \cr {x^2} - 2ax + 1 \le 0 \hfill \cr}...

     Với giá trị nào của a, các hệ phương trình sau có nghiệm

    a) 

    \(\left\{ \matrix{
    {x^2} – 5x + 6 < 0 \hfill \cr
    ax + 4 < 0 \hfill \cr} \right.\)

    b)

    \(\left\{ \matrix{
    4x + 1 < 7x – 2 \hfill \cr
    {x^2} – 2ax + 1 \le 0 \hfill \cr} \right.\)

    Đáp án

    a) Bất phương trình đầu của hệ có nghiệm là 2 < x < 3

    Bất phương trình thứ hai của hệ tương đương với bất phương trình: ax < -4

    + Nếu a = 0 thì bất phương trình này vô nghiệm. Do đó, hệ vô nghiệm.

    + Nếu a > 0 thì nghiệm của phương trình là \(x <  – {4 \over a}\)

    Vì \( – {4 \over a} < 0\) nên hệ vô nghiệm.

    + Nếu a < 0 thì nghiệm của bất phương trình này là \(x >  – {4 \over a}\)

    Hệ có nghiệm khi và chỉ khi: 

    \(\left\{ \matrix{
    a < 0 \hfill \cr
    – {4 \over a} < 3 \hfill \cr} \right. \Leftrightarrow a < – {4 \over 3}\)

    Vậy hệ có nghiệm khi và chỉ khi: \(a <  – {4 \over a}\)

    b) Bất phương trình đầu của hệ có nghiệm là x > 1

    Xét bất phương trình thứ hai của hệ:

    Ta có: Δ’= a2 – 1

    Nếu Δ’= 0 ⇔ a = ± 1

    + Với a = 1, nghiệm của bất phương trình là x = 1

    Do đó, hệ vô nghiệm.

    + Với a = -1, nghiệm của bất phương trình là x = -1

    Nếu Δ’ < 0 hay -1 < a < 1 thì bất phương trình này vô nghiêm.

    Do đó, hệ vô nghiệm.

    Nếu Δ’ > 0 hay a < -1 hoặc a > 1 thì tam thức ở vế trái của bất phương trình có hai nghiệm phân biệt x1, x2.

    Nghiệm của bất phương trình này là: x1 ≤ 1  ≤ x2  (giả sử x1 < x2)

    Theo định lý Vi-ét, ta có: x1x2 = 1 và x1 + x2 = 2a

    + Nếu a < -1 thì cả hai nghiệm x1 và  x2 đều âm. Do đó, hệ đã cho vô nghiệm.

    + Nếu a > 1 thì hai nghiệm x1 và x2 đều dương. Ngoài ra vì x1x2 = 1 và x1 ≠ x2 nên x1 < 1 < x2.

    Do đó, hệ có nghiệm.